Key Vocabulary: add, more, sum, make, total, How much more is...? one more, altogether
Objective \& Strategy

- Knows that a group of
things change in quantity
when something is added.
- Find the total number of
items in two groups by
counting all of them.
- Says the number that is
one more than a given
number.
- Finds one more from a
group of up to five objects,
then ten objects.
- In practical activities and
discussion, beginning to use
the vocabulary involved in
adding.
- Using quantities and
objects, they add two single
digit numbers and count on
to find the answer.
- Solve problems including
doubling.

Year 1

Key Vocabulary: add, more, sum, make, total, How much more is...? one more, altogether, plus, altogether, more than, put together, and, most, count on, double, equal, equal to, number line
Objective \& Strategy
To add a one digit and two
digit number to 20 , including
zero.

Year 2

 inverse, digits, commutative law

Objective \& Strategy	Concrete	Pictorial	Abstract						
-To recall and use addition facts to 20 fluently	Use concrete apparatus to represent each part of calculation: cubes, base 10, place value counters etc. Then use this to show related addition facts. Part- part whole models and bars can be used to support this.	Use pictorial representatives to explore addition facts to 20. Children begin to showing their understanding by representing using numbers.	Record as a written calculation $\begin{aligned} & ?+1=20 \\ & 1+?=20 \end{aligned}$ Understand the term commutative for addition $\begin{array}{r} 20-1=? \\ 20-?=1 \end{array}$						
-To derive and use related facts up to 100.	Use concrete appartus (base 10/place value counters) to show mathematical facts up to 100 . For example: $3+3=6$ So.. $30+30=60$	Use pictorial representations to show mathematical related facts. Children show their thinking using jottings to record their mathematical calculations. $\begin{array}{ll} 3+3=6 & \because+\therefore=\therefore \\ 30+30=60 & \|\|\mid+\\| \\|=\\| \\|\\| \\| \\ 300+300=600 & \square \square+\square \square=\square \square \end{array}$	Record as a written calculation $3+4=7$ leads to... $30+40=70$ leads to... $300+400=700$						
-To add 3 one-digit numbers.	Use concrete apparatus (bead strings/cubes/base 10) to add three single digit numbers. $4+7+6=17$ Put $4+6$ together to make 10 . Add on 7. $7+2+3$ Combine to make 10 first if possible, or bridge 10 then add the third digit.	Use pictorial representations to add three single digit numbers. Children find the numbers that make 10 to aid the adding skills. Regroup and draw representation.	Record as a written calculation Children are encouraged to add the numbers that make ten before adding the final number. $\begin{aligned} (4+7+6 & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make/ bridge ten then add on the third.						

Children will continue to organise calculations using concrete resources (base 10/place value counters) to make sense of the calculation.

Step 1: (Not crossing tens boundary)

-To add two 2-digit numbers to 100 (including bridging)

Step 2: (Bridging)

Use pictorial representations to add two 2-digit number to 100.

Step 1: (Not crossing tens boundary)
$T \quad 0$
$11 \quad \therefore$
$\frac{111}{50+7}=57$

Once all exchanges are complete we see

When children bridge through 10, they will need to exchange 10 ones for 1 ten.

Record as written calculation using digits

Step 1: (Not crossing tens boundary)

$20+3$
$+30+4$
$50+7$
$=\underline{\underline{50}}$

Step 2: (Bridging)

Year 3

 hundreds, inverse, digits, commutative law, increase, vertical, 'carry', expanded, compact

Year 4
 inverse, digits, hundreds, commutative law, increase, vertical, 'carry', expanded, compact, thousands

Years 5 \& 6

 inverse, digits, commutative law, hundreds, increase, vertical, 'carry', expanded, compact, decimal places, decimal point, tenths, hundredths, thousandths, integer

