Deeping St James Community Primary Calculation Policy - Subtraction

Key Vocabulary: take away, difference between, how many are left/ left over? How many are gone? one less, ... less, How many fewer is...than...? How much less is...? difference.
Objective \& Strategy

- Knows that a group of
things change in quantity
when something is taken
away

- Find one less from a group
of five objects, then ten
objects.
- In practical activities and
discussion, beginning to use
the vocabulary involved in
subtracting.

Year 1

 many more, most, least, count back

Objective \& Strategy	Concrete	Pictorial	Abstract
-Subtract one-digit and twodigit numbers to 20 , including 0. Taking away ones	Use concrete apparatus (counters, bead strings, cubes, numicon, base 10) and other physical objects to find the solution by removing several objects from the whole - taking away. $6-3=3$ $15-3=12$ $15-0=15$ $20-4=16$ Exchange one ten for 10 ones and then subtract the smaller number.	Children represent pictorially by drawing objects/ tens frames and crossing out to show what has been taken away. Use part whole models and bar models to represent the subtractions - pictorially or with numbers.	Record as a written calculation. $\begin{gathered} 6-3=3 \\ 15-3=12 \\ 15-12=3 \\ 10-3=7 \\ 10-7=3 \end{gathered}$
-Subtract one-digit and twodigit numbers to 20 , including 0. Counting Back	Use concrete apparatus (counters, bead strings, cubes) and other physical objects to find the solution by counting back from the larger number. $13-4=9$ Make the larger number in the subtraction. Move the beads along the string as you count backwards in ones. Use counters to make the larger number in the subtraction. Move them away from the group as you count backwards in ones.	Use pictorial representations of number lines, number tracks or 100 squares. Start at the bigger number and count back the smaller number showing the jumps on the number line. $7-4=3$	Understand subtraction verbally. Put 15 in your head, count back 3, what number are you at? Record as a written calculation. $\begin{aligned} & 13-4=9 \\ & 15-3=12 \end{aligned}$

Year 2

 many more, most, least, count back, count on, strategy, partition, tens, ones, inverse

Objective \& Strategy	Concrete	Pictorial	Abstract
-To subtract numbers using objects, pictures and mentally including: *a 2-digit number and ones *a 2-digit number and tens *two 2-digit numbers	Use concrete apparatus base 10/ place value counters to represent the numbers in the calculation then use the knowledge of exchanging tens for ten ones in order to subtract. Bead strings can be used to show counting on to find the difference. $34-28=4$	Use pictorial representations on a number line or a hundred square. Count back from the largest number to the smallest number to find the difference. $34-9=25$ $45-20=25$ $93-76=17$ $47-23=24$ progress to more efficient jumps: Modelled using a bar model - understanding 'difference' $93-76=17$	Record as a written method using number lines. Use both the count on and count back methods ensuring that the children understand that they are finding the difference between the numbers. Count on: $34-9=25$ $45-20=25$ $93-76=17$ Count back: (Also see pictorial) $17 \quad 20 \quad 22$ 42

-To derive and use related facts up to 100 .	Use concrete appartus (base 10/place value counters, cubes) to show mathematical facts up to 100 . $10-3=7$ $100-30=70$	Use pictorial representations to show mathematical related facts. Children show their thinking using jottings to record their mathematical calculations. $\begin{aligned} & 10-3=7 \\ & 100-30=70 \end{aligned}$ Bar models and part whole representations:	Record as a written calculation $10-7=3$ leads to... $100-70=30$
-To subtract tens from a 2digit number.	Use concrete apparatus (base 10/ place value counters) to subtract tens from a 2 -digit number. $80-30=50$ $58-20=38$	Use/ model pictorial representations (base 10/place value counters) crossing out the tens that are being subtracted. $58-20=38$	Record as a written calculation $80-30=50$ $58-20=38$

Deeping St James Community Primary Calculation Policy - Subtraction

Year 3

 many more, most, least, count back, count on, strategy, partition, tens, ones, inverse, exchange, decrease, hundreds, value, digit

Deeping St James Community Primary Calculation Policy - Subtraction

Deeping St James Community Primary Calculation Policy - Subtraction

Year 4

 many more, most, least, count back, count on, strategy, partition, tens, ones, inverse, exchange, decrease, hundreds, value, digit, thousands

Objective \& Strategy	Concrete	Pictorial	Abstract
Pupils should be using formal written methods of column subtraction where appropriate. -To subtract numbers with up to 4 digits using a formal written method.	Use concrete apparatus (base 10/place value counters) to subtract numbers up to 4 digits. Make the number then regroup by exchanging a ten for ten ones and a hundred for ten tens and a thousand for ten hundreds where necessary so that the number can be subtracted. Children begin to understand multi exchange where exchange is needed in more than one column. 2754-1568=1186 Step 1: Make the number. Step 2: Exchange 1 ten for 10 ones and 1 hundred for 10 tens. Step 3: Subtract 8 ones, 6 tens, 5 hundreds and 1 thousand.	Use pictorial representations to subtract numbers up to 4 digits. Children draw pictorial representations to show the regrouping in order to find the difference. $2754-1568=1186$ $1000+100+80+6=1186$	Record as a written calculation Use formal column subtraction, including examples with multiples exchanges. $2754-1568=1186$
-To solve simple measure and money problems up to two decimal places. -To subtract amounts of money to give changeprogression from Y3.	Use the place value counters to make the number then regroup by exchanging, where necessary: a thousand for ten hundreds, a hundred for ten tens, a ten for ten ones, a one for ten tenths and ten tenths for a hundredth so that you can subtract. $£ 1.45-28 p=£ 1.17$ Step 1: Make the number Step 2: Exchange *because you can't subtract 8 from 5. Children will need to exchange 10 p for 10 x 1 p . Step 3: Subtract to solve	Use pictorial representations to show the regrouping in order to find the difference. Model using bar model to visualsie the calculation. £1.45 28p $£ 1.45-28 p=£ 1.17$.	Formal written method Children complete subtractions involving decimals which are presented in word problem format. They use zeros for place holders and know that decimal points should line up under each other. Bella spends 28p in the shop. She has $£ 1.45$ pocket money. How much change will she receive? $\begin{array}{r} £ 1.45 .28 p \\ £ 1.34^{1} 5 \\ -\quad .28 \\ \hline £ 1.17 \\ \hline \end{array}$ Calculating change from $£ 5$ - use number line method - see Year 3.

Years 5 \& 6

 many more, most, least, count back, count on, strategy, partition, tens, ones, inverse, exchange, decrease, hundreds, value, digit, thousands, integer, tenths, hundredths, decimal point, decimal

Objective \& Strategy	Concrete	Pictorial	Abstract
At this stage pupils should be encouraged to work in the abstract using the formal column method to subtract larger numbers efficiently. -To subtract numbers with at least 4 digits. (Y5) -To subtract numbers with increasingly large and complex numbers. (Y6)	Use the place value counters to make the number, then regroup by exchanging, where necessary. $31056-2128=28928$ Step 1: Step 2: Exchange Step 3: Subtract	If required children draw pictorial representations to show the regrouping in order to find the difference. $31056-2128=28928$	(Children can have abstract supported by a pictorial or concrete if required.) Record as a written calculation Formal column subtraction. Children to solve calculation including those with a different number of digits.
-To solve problems involving measure using decimal notation up to three decimal places. (Y5) -To subtract with increasingly large and more complex numbers and decimal values (up to 3dp). (Y6) -To solve problems involving the conversion of units of measure, using decimal notation up to 3 decimal places. (Y6)	Use the place value counters to make the number then regroup by exchanging, where necessary. $105.419 \mathrm{~kg}-36080 \mathrm{~g}$ As this is a mixed measure problem, children would first convert so they are working with the same unit. $105.419 \mathrm{~kg}-36.080 \mathrm{~kg}$ Step one: Make the number. Step 2: Exchange. Step 3: Subtract to solve.	If required children draw pictorial representations to show the regrouping in order to find the difference. $105.419 \mathrm{~kg}-36.080 \mathrm{~kg}$	(Children can have abstract supported by a pictorial or concrete if required.) Record as a written calculation Formal column subtraction. Children complete subtractions involving decimals which are presented in word problem format. They use zeros for place holders and know that decimal points should line up under each other. They convert measures so that they are working with the same unit. $105.419 \mathrm{~kg}-\mathbf{3 6 0 8 0} \mathrm{g}$ would convert into $105.419 \mathrm{~kg}-36.080 \mathrm{~kg}$

