Key Vocabulary: grouping, doubling, equal
Objective \& Strategy

Year 1

Key Vocabulary: grouping, doubling, equal, groups of, lots of, times, array, altogether, multiply, count
Objective \& Strategy

-To make equal groups and count the total.	Children will use concrete resources (cubes, bead strings, numicon) to make equal groups. 'I know there are $\mathbf{2}$ groups with $\mathbf{6}$ in each group.'	Children will draw jottings and have pictorial representations to demonstrate knowledge of equal groups. $2 \times 6=12$ I know there are $\mathbf{2}$ groups and in each group there are $\mathbf{6}$ flowers.	Understand as a written calculation $2 \times 6=12$ 'I know there are $\mathbf{2}$ groups with $\mathbf{6}$ in each group.'
-To understand multiplication as repeated addition.	Use of real objects, counters, cubes, numicon and bead strings to add equal groups.	Use pictorial representations, including the use of a number line to solve problems. $5+5+5=15$ There are 3 sweets in 1 bag. How many sweets are in 5 bags altogether?	Understand and write repeated addition number sentences to describe pictures or objects. $3+3+3+3+3=15$
-To understand multiplication as arrays.	Create arrays using various concrete objects, which they then can describe what it represents e.g. 2 lots of 5,3 lots of 10 .	Draw pictorial representations and have the visually provided ones to show understanding of arrays. 2 lots of 5 3 lots of 2.	Understand as a written calculation $\begin{aligned} & 3 \times 2=6 \\ & 2 \times 5=10 \end{aligned}$

Year 2

Key Vocabulary: grouping, doubling, equal, groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, column, row, commutative law, inverse, sets of, lots of, equal groups, times, times as big as, once, twice, three times..

Objective \& Strategy	Concrete	Pictorial	Abstract
-To double numbers up to 100.	Use concrete apparatus base 10, place value counters or numicon to represent the numbers. Use base 10 or place value counters to partition a number before doubling. Double the ones then tens and recombine. Double 26 is 52	Use pictorial representations to show how to double numbers. Double 26 is 52	Partition a number and then double each part before recombining back together. Double 26 $\begin{aligned} 20+20 & =40 \backslash 52 \\ 6+6 & =12 \end{aligned}$ or
-To count in multiples of 2 s , $3 s, 5 s$ and $10 s$ (repeated addition).	Use concrete appartus (counrters, cubes, bead strings) to show the groups. Count the groups; as children are skip counting, children may use their fingers as they are skip counting. Also use bar models. $5+5+5+5+5+5+5+5=40$	Use a variety of pictorial representations to show representation of counting in multiples. $6 \times 5=30$	Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{aligned} & 0,2,4,6,8,10 \\ & 0,3,6,9,12,15 \end{aligned}$ $0,5,10,15,20,25,30$ $4 \times 3=3+3+3+3=$

Year 3
 as, once, twice, three times..., partition, grid method, total, multiple, product, tens, ones, value

Objective \& Strategy	Concrete	Pictorial	Abstract
-To use related multiplication and division facts using the inverse for the 2-, $3-, 4-, 5-$, 8 - and 10 - times table.	Use concrete apparatus (base 10, counters, cubes) to understand the link between multiplication and division and to find related facts. $3 \times 6=18 \quad 18 \div 3=6 \quad 6 \times 3=18 \quad 18 \div 6=3$	Use pictorial representations to show an array pictorially then find the associated multiplication and division facts by sorting into equal groups.	Apply understanding of inverse relationships to write related multiplication and division statements. Use associated vocabulary correctly and know what each number represents in the calculation. muitiplier multiplicand product dividend divisor quotient $\begin{array}{ccc}18 \div 3=6 \\ 7 & \div \\ \text { number number number in } \\ \text { in oll } & \text { of groups eoch group }\end{array}$
-To use partitioning to support multiplication calculations.	Use concrete apparatus (place value counter, counters, base 10) to introduce the partitioned method by using arrays to demonstrate the links. $23 \times 8=184$ 101011 1010111 1010111 1010111 (10) 10 1 $\rightarrow 160+24=184$ 101011 101011 101011 $160+24=184$	Use pictorial representations of place value counters, counters, base 10. They can draw the counters (using colours to show different amounts or just use the circles in the different columns) or base 10.	Start with multiplying by one-digit numbers using partitioning, showing the clear addition. $\begin{gathered} 14 \times 6 \\ (10 \times 6)+(4 \times 6) \\ 60+24=84 \end{gathered}$

Deeping St James Community Primary Calculation Policy - Multiplication
Year 4
Key Vocabulary: grouping, doubling, equal, groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, column, row, commutative law, inverse, sets of, lots of, equal groups, times, times as big as, once, twice, three times..., partition, grid method, total, multiple, product, tens, ones, value, hundreds, thousands, factor

Objective \& Strategy	Concrete	Pictorial	Abstract
-To recall multiplication and division facts for multiplication tables up to 12x 12.	Use concrete apparatus (base 10, counters, cubes) to understand the link between multiplication and division and to find related facts. $3 \times 6=18 \quad 18 \div 3=6 \quad 6 \times 3=18 \quad 18 \div 6=3$	Use pictorial representations to show an array pictorially then find the associated multiplication and division facts by sorting into equal groups.	Apply understanding of inverse relationships to write related multiplication and division statements. $\begin{array}{ll} 3 \times 6=18 & 18=3 \times 6 \\ 6 \times 3=18 & 18=6 \times 3 \\ 18 \div 3=6 & 6=18 \div 3 \\ 18 \div 6=3 & 3=18 \div 6 \end{array}$ Use associated vocabulary correctly and know what each number represents in the calculation. muitiplier muitiplicand product dividend divisor quotient
-To multiply and divide mentally, including: multiplying by 0 and 1 and multiplying together 3 numbers.	Multiply and divide numbers by zero and one. Understand the meaning of the calculation and the need of equal sized groups. Use objects to calculate totals when three numbers are multiplied together. $2 \times 4 \times 5=40$	Show understanding of multiplying by 0 and 1 by drawing representations. Use objects to calculate totals when three numbers are multiplied together. Or may be represented as: $2 \times(4 \times 5) \quad 2 \times(20)=40$	Understand how to multiply by 1 and 0 and apply to word $\begin{array}{lr} 1 \times 83= & \text { problems. } \\ 4567 \times 0= & 76 \times 1= \\ 0 \times 23= \end{array}$ Jack earns $£ 12$ a week on his paper round. He did not work for one week whilst he was on holiday. How much did he earn? Solve number puzzles using the knowledge of multiplying 3 single digit numbers. Make the target number 30 by using three of the digits below.

Pupils should be using formal written methods of column written methods of co
multiplication where appropriate.
-To use a formal written method of multiplication (partitioned column method)

3-digit x 1-digit number

Pupils should be using formal written methods of column multiplication where appropriate.
-To use a formal written method of multiplication (short multiplication).

3-digit x 1-digit number

Recap the partitioned column method introduced in Y3-use partitioning to multiply numbers. Children use base ten and place value counters to represent arrays of the partitioned number.
$327 \times 4=1308$

$1200+80+28=1308$

$1200+80+28=1308$
Encourage regrouping mentally rather than using a formal method for efficiency.

Use concrete apparatus (place value counter, counters, base 10) as per the partitioned method to support the formal method of short multiplication.
4×245

Children show their understanding by represent the calculation by partitioning using their own pictorial representation.
$327 \times 4=1308$

Also use jottings to partition the multiplicand and multiply each part by the multiplier.

Use pictorial representations of place value counters, counters, base 10. They can draw the counters (using colours to show different amounts or just use the circles in the different columns) or base 10.

Formal written short multiplication method:

Formal written partitioned method:

Children in Y4 may still require the steps set out in the partitioned method as they progress to multiplying 3-digit x 1 digit numbers. Use concrete apparatus alongside as an additional support if required.

Deeping St James Community Primary Calculation Policy - Multiplication
Years 5

 numbers, prime factors

Objective \& Strategy	Concrete	Pictorial	Abstract
-To recall multiplication and division facts for multiplication tables up to 12×12.	Use concrete apparatus (base 10, counters, cubes) to understand the link between multiplication and division and to find related facts. $3 \times 6=18 \quad 18 \div 3=6 \quad 6 \times 3=18 \quad 18 \div 6=3$	Use pictorial representations to show an array pictorially then find the associated multiplication and division facts by sorting into equal groups.	Apply understanding of inverse relationships to write related multiplication and division statements. $\begin{array}{ll} 3 \times 6=18 & 18=3 \times 6 \\ 6 \times 3=18 & 18=6 \times 3 \\ 18 \div 3=6 & 6=18 \div 3 \\ 18 \div 6=3 & 3=18 \div 6 \end{array}$ Use associated vocabulary correctly and know what each number represents in the calculation.
-To recognise and use square numbers and cube numbers.	Use resources to explore squared and cubed numbers. Square numbers Cubed numbers	Represent squared and cubed numbers pictorially. They use the correct notation for squared (${ }^{2}$) and cubed (3).	Find and recognise squared and cubed numbers and use the correct notation for squared (${ }^{2}$) and cubed (3). $\begin{gathered} 2^{2} \text { or } 2 \times 2=4 \\ 3^{2} \text { or } 3 \times 3=9 \\ 4^{2} \text { or } 4 \times 4=16 \\ 1^{3}=1 \times 1 \times 1=1 \\ 2^{3}=2 \times 2 \times 2=8 \\ 3^{3}=3 \times 3 \times 3=27 \\ 4^{3}=4 \times 4 \times 4=64 \end{gathered}$

Deeping St James Community Primary Calculation Policy - Multiplication
Years 6

 numbers, prime factors

Objective \& Strategy	Concrete	Pictorial	Abstract
At this stage pupils should be encouraged to work in the abstract. -To recall multiplication and division facts for multiplication tables up to 12x 12.	Use concrete apparatus (base 10, counters, cubes) to understand the link between multiplication and division and to find related facts. $3 \times 6=18 \quad 18 \div 3=6 \quad 6 \times 3=18 \quad 18 \div 6=3$	Use pictorial representations to show an array pictorially then find the associated multiplication and division facts by sorting into equal groups.	Apply understanding of inverse relationships to write related multiplication and division statements. $\begin{array}{ll} 3 \times 6=18 & 18=3 \times 6 \\ 6 \times 3=18 & 18=6 \times 3 \\ 18 \div 3=6 & 6=18 \div 3 \\ 18 \div 6=3 & 3=18 \div 6 \end{array}$ Use associated vocabulary correctly and know what each number represents in the calculation.
At this stage pupils should be encouraged to work in the abstract. -To multiply whole numbers and those involving decimals by 10, 100 and 1,000	Use resources to understand what 10, 100 and 1000 times bigger looks like.	Use place value grids to multiply numbers by 10, 100 and 1000s. They understand the movement of the digits on the place value grid. Apply this knowledge to decimal numbers. $7.9 \times 1000=7900$	Apply knowledge of place value to multiply numbers by 10 , 100 and 1000, including decimal numbers. $\begin{aligned} & 34 \times 100=3400 \\ & 1234 \times 1000=1234000 \\ & 5.6 \times 10=56 \\ & 12.367 \times 100=1236.7 \end{aligned}$ Apply knowledge to word and number puzzles. Here are five number cards Use four of the cards to completa these calculations $47 \div$ \square $=$ \square \square \times \square $=40.7$

At this stage pupils
should be encouraged to work in the abstract using the formal methods to multiply larger numbers efficiently.
-To use a formal written method of multiplication (short multiplication).

4-digit x 1-digit number

At this stage pupils

 should be encouraged to work in the abstract using the formal methods to multiply larger numbers efficiently.-To use a formal written method of multiplication (long multiplication).

Up to 4-digit x 2-digit number

As Year 4 but progressing onto 4-digit x 1-digit numbers.
Use concrete apparatus - if required - (place value counter, counters, base 10) as per the partitioned method to support the formal method of short multiplication.
$4 \times 1325=5300$

$5 \times 4=20$
$20 \times 4=80$
$300 \times 4=1200$
$1000 \times 4=4000$

Represent calculations using the place value counters using the partitioning method introduced in Y 3 .
$18 \times 13=234$

$18 \times 13=234$
Children can then solve in a columnar form. They begin by multiplying the ones, then the tens, the hundreds then the thousands before finding the total.

Use pictorial representations - if required - of place value counters, counters, base 10. They can draw the counters (using colours to show different amounts or just use the circles in the different columns) or base 10 .

Use knowledge of place value to partition the multiplicand and multiplier. They then show their understand pictorially using a partitioned method.
$18 \times 13=234$

\times	10	8
10		
3	111	(24)

Children then move

 towards the columnar method by representing each stage with jottings. Children taught to multiply the ones first as in previous years.

Formal written short multiplication method:

Record written calculation of long multiplication.
$18 \times 13=234$

1234×16

At this stage pupils
should be encouraged to
work in the abstract using the formal methods to multiply.
-To use a formal written method of multiplication to multiply number up to 2 decimal places. (Short Multiplication)

Decimal numbers $\times 1$-digit number

Represent calculations using the place value counters and base ten equipment. They partition the decimal number and multiply by the multiplier. They then find the total.

Continue to multiply decimal numbers by partitioning the decimal number. Draw pictorial representations and use jottings to find the total.
$4.92 \times 3=14.76$

Formal written short multiplication method: Decimal points line up under each other, zeros are added at place holders and the multiplier must be positioned in the correct place value column.
4.92×3

3.19×8

