Deeping St James Community Primary Calculation Policy - Division
EYFS
Key Vocabulary: sharing, halving, number patterns, equal
Objective \& Strategy

Deeping St James Community Primary Calculation Policy - Division

Year 1

Key Vocabulary: sharing, halving, number patterns, equal, share, share equally, one each, two each..., group, groups of, lots of, array, half, division, dividing, grouping, array, pattern, equal grouping, equal sharing

Objective \& Strategy	Concrete	Pictorial	Abstract
-To divide by sharing -To halve a number up to 20.	Use concrete resources (cubes, bead strings, counters) to share into equal groups. Children will also be able to half a number up to 20 by sharing into equal groups. 'I know there are $\mathbf{2}$ groups so I can share $\mathbf{1 2}$ counters which will equal $\mathbf{6}$ in each group.'	Draw jottings and have pictorial representations to demonstrate knowledge of sharing into equal groups. $12 \div 2=6$ I know there are $\mathbf{2}$ groups and in each group there are 6 flowers. $12 \div 4=3$ 12	Introduce to word problems to solve division sharing problems. 6 sweets are shared between 2 people. How many do they have each? $12 \div 2=6$ 'I know there are $\mathbf{2}$ groups so I can share 12 counters which will equal $\mathbf{6}$ in each group.'
-To divide by grouping.	Begin to solve division problems, which require sorting objects and quantities into $2 \mathrm{~s}, 4 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s . Use concrete resources such as cubes, counters or objects to aid understanding. $10 \div 5=2$	Use number lines to show grouping. $10 \div 2=5$ Investigate dividing by grouping using the bar model. The children will be given a number or picture representatives. This will represent the whole. They then need to split the whole into the number of groups they are dividing by and work out how many would be in each group. $\text { e.g. } 10 \div 5=2$	Introduce to word problems to solve division grouping problems. There are 10 flower bulbs. Plant 2 in each pot. How many pots are there? $10 \div 2=5$ There are 10 flower bulbs. Plant 5 in each pot. How many pots are there? $10 \div 5=2$

Deeping St James Community Primary Calculation Policy - Division

Year 2

 divided by, divided into, number line, left, left over, inverse,

Objective \& Strategy	Concrete	Pictorial	Abstract
-To divide by sharing.	Use a range of concrete resources (cubes, counters, base 10) to share quantities into equal groups. I have 12 counters; can you share them equally into 3 groups?	Use pictures and shapes to share quantities. Use the bar models to show and support their understanding. e.g. $12 \div 4=3$	Record division number sentence using the divide symbol. $\begin{aligned} & 12 \div 3=4 \\ & 12 \div 4=3 \end{aligned}$
-To divide by grouping (repeated subtraction)	Begin to solve division problems, which require sorting objects and quantities into $2 \mathrm{~s}, 4 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s . Use concrete resources such as cubes, counters, bead strings or objects to aid understanding.	Use number lines to show grouping as repeated subtraction. Pictorial representation of grouping using the bar model. The children will be given a number or picture representatives. This will represent the whole. They then need to split the whole into the number of groups they are dividing by and work out how many would be in each.	Record division number sentence using the divide symbol. 12 shared by 3 equals 4 There are 12 flower bulbs. Plant 3 in each pot. How many pots are there? $12 \div 3=4$ There are 12 flower bulbs. Plant 4 in each pot. How many pots are there? $12 \div 4=3$

-To use related
multiplication and division facts using the inverse for the 2-, 3-, 5- and 10-times table.

This should be taught alongside multiplication to show how the numbers relate and build fluency
Use concrete resources (cubes, counters, base 10) to represent arrays. These will then form part of the learning process to explain number related facts and begin to write these in number form.

$$
2 \times 4=8 \quad 4 \times 2=8 \quad 8 \div 2=4 \quad 8 \div 4=2
$$

How many groups of 3 in 12? $12 \div 3=4$

Use pictorial representations to solve missing number facts that demonstrate related facts.

Use a range of pictures to represent arrays to show different calulations and show commuatativity.

$$
12 \div 3=4
$$

$$
12 \div 4=3
$$

Record all 8 related number sentences to demonstrate related facts.

$$
2 \times 4=8
$$

$$
4 \times 2=8
$$

$$
8 \div 2=4
$$

$$
8 \div 4=2
$$

$$
8=2 \times 4
$$

$$
8=4 \times 2
$$

$$
2=8 \div 4
$$

$$
4=8 \div 2
$$

Year 3
 divided by, divided into, number line, left, left over, inverse, short division, 'carry', remainder, multiple

Objective \& Strategy	Concrete	Pictorial	Abstract
-To use related multiplication and division facts using the inverse for the 2-, $3-, 4-$, 5 -, 8 - and 10 - times table.	Use concrete apparatus (base 10, counters, cubes) to understand the link between multiplication and division and to find related facts. $3 \times 6=18 \quad 18 \div 3=6 \quad 6 \times 3=18 \quad 18 \div 6=3$	Use pictorial representations to show an array pictorially then find the associated multiplication and division facts by sorting into equal groups.	Apply understanding of inverse relationships to write related multiplication and division statements. $\begin{array}{ll} 3 \times 6=18 & 18=3 \times 6 \\ 6 \times 3=18 & 18=6 \times 3 \\ 18 \div 3=6 & 6=18 \div 3 \\ 18 \div 6=3 & 3=18 \div 6 \end{array}$ Use associated vocabulary correctly and know what each number represents in the calculation.
-To using grouping to divide. (repeated subtraction) *Introduce remainders in division.	Use concrete resources (cubes, counters, bead strings) to divide by grouping. Make the total number and then repeatedly subtract groups of the divisor. When working with divisions that have a remainder the pupils will not get down to 0 counters, they will have an amount left over - the remainder.	Continue to use repeated subtraction on the number line but will work with increasingly large numbers. $36 \div 6=6$ Children will count back from in 6 s from 36 until they reach 0 . Bar models will continue to support understanding of equal groups. Begin to introduce remainders - how many are left over when grouping. $58 \div 8=$ \square 7 2	Record written division using number lines: Record written division using number lines, including remainders: $13 \div 4=3 r 1$ ' 3 groups of 4 , with 1 left over' $58 \div 8=7$

Deeping St James Community Primary Calculation Policy - Division
Year 4
 divided by, divided into, number line, left, left over, inverse, short division, 'carry', remainder, multiple, divisible by, factor

Objective \& Strategy	Concrete	Pictorial	Abstract
-To recall multiplication and division facts for multiplication tables up to 12x 12.	Use concrete apparatus (base 10, counters, cubes) to understand the link between multiplication and division and to find related facts. $3 \times 6=18 \quad 18 \div 3=6 \quad 6 \times 3=18 \quad 18 \div 6=3$	Use pictorial representations to show an array pictorially then find the associated multiplication and division facts by sorting into equal groups.	Apply understanding of inverse relationships to write related multiplication and division statements. $\begin{array}{ll} 3 \times 6=18 & 18=3 \times 6 \\ 6 \times 3=18 & 18=6 \times 3 \\ 18 \div 3=6 & 6=18 \div 3 \\ 18 \div 6=3 & 3=18 \div 6 \end{array}$ Use associated vocabulary correctly and know what each number represents in the calculation.
-To recognise and use factor pairs, understanding the links with multiplication.	Use physical objects to create arrays to support their understanding of factors. Factors of 24 (3) (12) (2)	Investigate finding all factors of a number by drawing arrays. Factors of 24	Use their knowledge of multiplication and division facts to find factors of numbers. Factors of 24 $\begin{aligned} & 1 \times 24=24 \\ & 2 \times 12=24 \\ & 3 \times 8=24 \\ & 4 \times 6=24 \end{aligned}$

Pupils should be using formal written methods of short division when appropriate.
-To use a formal written method for division. (short division).

2/3-digit $\div 1$-digit number

Continuation/ Progression from Y3.
Use concrete apparatus (place value counters, counters, base 10) to support the understanding of the formal method of short multiplication.
Partition the dividend and put inside the short division sign then divide each part by the divisor. The quotient is then recorded on the top line.

$$
98 \div 3=32 \text { r } 2
$$

$432 \div 5=86 r 2$

Represent divisions using informal jottings and pictorial representations.
$98 \div 3=32 r 2$

$98 \div 7=14$

$432 \div 5=86 r 2$

Formal written short division method

When secure the children use the short division sign to record the abstract division. Children may still use pictorial representations at this stage as this will be embedded in Y5

$$
98 \div 3=32 r 2
$$

$98 \div 7=14$

$432 \div 5=86 r 2$

Deeping St James Community Primary Calculation Policy - Division
Years 5
 divided by, divided into, number line, left, left over, inverse, short division, 'carry', remainder, multiple, divisible by, factor, quotient, integer, prime number, prime factors, composite number (non-prime)

Objective \& Strategy	Concrete	Pictorial	Abstract
-To recall multiplication and division facts for multiplication tables up to 12×12.	Use concrete apparatus (base 10, counters, cubes) to understand the link between multiplication and division and to find related facts. $3 \times 6=18 \quad 18 \div 3=6 \quad 6 \times 3=18 \quad 18 \div 6=3$	Use pictorial representations to show an array pictorially then find the associated multiplication and division facts by sorting into equal groups.	Apply understanding of inverse relationships to write related multiplication and division statements. $\begin{array}{ll} 3 \times 6=18 & 18=3 \times 6 \\ 6 \times 3=18 & 18=6 \times 3 \\ 18 \div 3=6 & 6=18 \div 3 \\ 18 \div 6=3 & 3=18 \div 6 \end{array}$ Use associated vocabulary correctly and know what each number represents in the calculation. multiplier multiplicand product dividend divisor quotient
-To recognise and use factor pairs of a number and find common factors of two numbers.	Use physical objects to create arrays to support their understanding of factors. Find the common factors of 18 and 24 Factors of 18 The common factors are 1, 2, 3 and 6 .	Investigate finding factors by drawing arrays to find all solutions. They then find factors which belong to both numbers. Find the common factors of 18 and 24 Factors of 24 Factors of 18 The common factors are 1, 2, 3 and 6 .	Use multiplication and division facts to find factors of numbers. Find the common factors of 18 and 24 Factors of 18 Factors of 24 (1) $\times 18$ (1) $\times 24$ (2) $\times 9$ (2) $\times 12$ (3) \times (6) (3) $\times 8$ The common factors are 1, 2, 3 and 6 . This three-digit number has 2 and 7 as factors. 294 Write another three-digit number which has $\mathbf{2}$ and 7 as factors.

Deeping St James Community Primary Calculation Policy - Division

At this stage pupils
should be encouraged to
work in the abstract using the formal method to divide larger numbers efficiently.
-To use a formal written method for division. (short division)

3/4-digit \div 1-digit number

Continuation/ Progression from Y4
Use concrete apparatus (place value counters, counters, base 10) to support the understanding of the formal method of short multiplication.
Partition the dividend and put inside the short division sign then divide each part by the divisor. The quotient is then recorded on the top line
$432 \div 5=86$ r 2

Apply this same representation when using 4-digit $\div 1$-digit numbers

Represent divisions using informal jottings and pictorial representations.
$432 \div 5=86 r 2$

Apply this same representation when using 4-digit $\div 1$-digit numbers

Formal written short division method
Children should be secure at this method by the end of $Y 5$ and be able to use this in the abstract confidently
$432 \div 5=86 r 2$

Children are expected to interpret non-integer answers by expressing results as fractions ($432 \div 5=86 \frac{2}{5}$), decimals ($432 \div 5=86.4$) or by rounding ($432 \div 5=86.4 \approx 86$ sweets) according to the context
$5309 \div 8=663$ r 5

Deeping St James Community Primary Calculation Policy - Division
Years 6
Key Vocabulary: sharing, halving, number patterns, equal, share, share equally, one each, two each..., group, groups of, lots of, array, half, division, dividing, grouping, array, pattern, equal grouping, equal sharing, divide, divided by, divided into, number line, left, left over, inverse, short division, 'carry', remainder, multiple, divisible by, factor, quotient, integer, prime number, prime factors, composite number (non-prime), common factor

Objective \& Strategy	Concrete	Pictorial	Abstract
At this stage pupils should be encouraged to work in the abstract. -To recall multiplication and division facts for multiplication tables up to 12x 12.	Use concrete apparatus (base 10, counters, cubes) to understand the link between multiplication and division and to find related facts. $3 \times 6=18 \quad 18 \div 3=6 \quad 6 \times 3=18 \quad 18 \div 6=3$	Use pictorial representations to show an array pictorially then find the associated multiplication and division facts by sorting into equal groups.	Apply understanding of inverse relationships to write related multiplication and division statements. $\begin{array}{ll} 3 \times 6=18 & 18=3 \times 6 \\ 6 \times 3=18 & 18=6 \times 3 \\ 18 \div 3=6 & 6=18 \div 3 \\ 18 \div 6=3 & 3=18 \div 6 \end{array}$ Use associated vocabulary correctly and know what each number represents in the calculation. multiplier multiplicand product dividend divisor quotient
-To identify common factors.	Use physical objects to create arrays to support their understanding of factors. Find the common factors of 18 and 24 Factors of 18 The common factors are 1, 2, 3 and 6 .	Investigate finding factors by drawing arrays to find all solutions. They then find factors which belong to both numbers. Find the common factors of 18 and 24 Factors of 24 Factors of 18 The common factors are 1, 2, 3 and 6 .	Use multiplication and division facts to find factors of numbers. Find the common factors of 18 and 24 Factors of 18 Factors of 24 (1) $\times 18$ (1) $\times 24$ (2) $\times 9$ (2) $\times 12$ (3) \times (6) (3) $\times 8$ The common factors are 1, 2, 3 and 6 . This three-digit number has 2 and 7 as factors. 294 Write another three-digit number which has $\mathbf{2}$ and 7 as factors.

-To know whether a number up to 100 is prime and recall prime numbers up to 100 .	Find prime numbers and composite (non-prime numbers) by using arrays. Understand that composite numbers form arrays and prime numbers cannot be arranged into arrays.	Use jottings and pictorial representations to investigate composite and prime numbers.	Use knowledge of multiples and factors to find the prime numbers up to 100. Eliminate numbers that have factors other than 1 . Recall all prime numbers up to 100 .
At this stage pupils should be encouraged to work in the abstract using the formal short division method to divide larger numbers efficiently. -To use a formal written method for division. (short division). 3/4-digit \div 1-digit number including decimals	See Year 5 Apply this same representation when using 4 -digit $\div 1$-digit numbers including decimals.	See Year 5 Apply this same representation when using 4 -digit $\div 1$-digit numbers including decimals.	Formal written short division method: Children should be secure at this method and be able to use this in the abstract confidently Children are expected to interpret non-integer answers by expressing results as fractions ($432 \div 5=86 \frac{2}{5}$), decimals ($432 \div 5=86.4$) or by rounding ($432 \div 5=86.4 \approx 86$ sweets) according to the context. $5309 \div 8=663 \text { r } 5$ $6497 \div 8=812.125$ $\frac{0812 \cdot 125}{86^{8}+9^{17} \cdot 0^{2} 0^{4} 0}$ Calculating a decimal remainder: In this example, rather than expressing the remainder as $\mathbf{r} 1$, a decimal point is added after the ones because there is still a remainder, and the one remainder is carried onto zeros after the decimal point (to show there was no decimal value in the original number). Children keep dividing to an appropriate degree of accuracy for the problem being solved.

At this stage pupils
should be encouraged to work in the abstract using the formal short division method to divide
efficiently
-To use a formal written method of long division.
-Divide larger numbers : 2-digit numbers (involving remainders).

We can't group 2 thousands into groups of 12 so we will exchange them. We can group 12 tens into a group of 12 , which

After exchanging the 2 tens, we have 24 ones. We

Represent calculations using the place value counters.
$2544 \div 12$

1000s	100s	10s	Is
		O00	णणலण

We can group 24 hundreds into groups of 12 which leaves with 1 hundred.

After exchanging the hundred, we have 14 tens. leaves 2 tens. can group 24 ones into 2 groups of 12, which leaves no remainder.

and I nunarea.

$432 \div 15=28$ r 12
Step one: Children will put the calculation into the grid and list their multiples of the divisor.

Step 2: Start with the hundreds. The divisor doesn't divide into 4 so combine the 4 hundred with the 3 tens (430). Use the multiples of 15 to calculate the nearest multiple. Two $\times 15$ is 30 . Record this underneath, put the 2 on the top then subtract.

Step 3: The divisor does divide into 13 so combine the 13 tens with the 2 ones (132). Use the multiples of 15 to
calculate the nearest multiple. 8×15 is 120. Record this underneath, put the 8 on the top then subtract.

Record written calculation of long division.

Step 4: The number left is your remainder, record this with your answer $432 \div 15=28$ r 12

Children are expected to interpret non-integar answers by expressing results as fractions $\left(432 \div 15=28^{\frac{12}{15}}=28^{\frac{4}{5}}\right)$, decimals $(432 \div 15=28.8)$ or by rounding $(432 \div 15=28.8 \approx$ 29 cars) according to the context.

